Rujeko Chinomona

Temple University Department of Mathematics (038–16) \$\display 1805 N. Broad St. \$\display Philadelphia, PA, 19122 rchinomona@temple.edu \$\display https://rujekoc.github.io/

EDUCATION

Southern Methodist University (SMU)

May 2021

Ph.D. in Computational & Applied Mathematics

(Advisor: Daniel Reynolds)

Thesis title: High-Order, Flexible Multirate Integrators for Multiphysics Applications

Rice University

May 2016

M.A. in Computational & Applied Mathematics (Advisor: Beatrice Riviere)

M.A. in Computational & Applied Mathematics
Thesis title: Black-oil Simulation Utilizing a Central Finite Volume Scheme

Georgia College & State University (GCSU)

May 2014

B.S. in Mathematics & Physics

TECHNICAL SKILLS

Programming languages: Proficient in MATLAB, C. Experience with Python, C++, C#, Fortran 90

High performance computing: Experience with MPI, OpenMP, CUDA, Unity

Computational mathematics: In-depth expertise in numerical analysis, with a specialized focus on developing robust methods for ordinary differential equations and differential algebraic equations

Scientific software development: Experience with designing, implementing, and deploying scientific software for applications in radiation transport and computational neuroscience

RESEARCH EXPERIENCE

Dept. of Mathematics, Temple University

Philadelphia, PA

Research Assistant Professor (Postdoctoral Researcher)

July 2021 - Present

Areas: numerical differential equations, moment methods, digital twins

(Advisor: Benjamin Seibold)

- Collaborate on constructing and implementing new stable and computationally efficient implicitexplicit multistep time stepping schemes
- Co-designed and applied computationally efficient moment method algorithms for advective systems in a network
- Design, develop and integrate new numerical methods into the StaRMAP software for the solution to spherical harmonic moment method systems with applications in radiative transfer
- Investigate and analyze performance of numerical algorithms best suited for real-time computing with user interaction for computational neuroscience simulations
- Train and co-supervise a dynamic team of undergraduate research students (approx. 4 students per semester)
- Conduct virtual reality demonstrations to experts and lay audiences

Dept. of Mathematics, SMU

Dallas, TX

Graduate Research Assistant

Jan 2018 - May 2021

(Advisor: Daniel Reynolds)

Areas: high-order time-stepping methods, multi-scale methods

 Developed innovative flexible, implicit-explicit, high-order numerical algorithms for multirate time integration specifically designed for multiphysics applications

- ♦ Demonstrated improved accuracy (up to 100K times) and efficiency (up to 100 times) compared to typically used operator splitting approaches
- Collaborated on developing new classes of multirate exponential integrators, constructing test cases, and performing convergence and efficiency studies

CASC Division, Lawrence Livermore National Laboratory

Remote

Computing Intern

June 2020 - Aug 2020

Areas: scientific computing, parallel computing, large-scale simulation

(Advisor: David Gardner)

- Implemented new multirate time integration algorithms in ARKODE, an open-source award winning solver library distributed as part of the SUNDIALS software package
- Designed and implemented test problems to assess method performance on spatially serial and parallel cases

CASC Division, Lawrence Livermore National Laboratory

Livermore, CA

Computing Intern

June 2019 - Aug 2019

Areas: large-scale multiphysics simulation, climate simulation

(Advisor: Carol Woodward)

- Investigated the applicability of multirate time stepping in cloud microphysics simulations
- Performed verification studies to match Matlab and Fortran 90 implementations

Dept. Computational and Applied Mathematics, Rice University

Houston, TX

Graduate Research Assistant

May 2015 - May 2016

Areas: reservoir simulation, numerical PDEs, conservation laws

(Advisor: Beatrice Riviere)

 Utilized finite volume methods for solving the black-oil system of PDEs for multi-phase fluid flow, and validated the application and results through comparison with existing research

Dept. of Physics, GCSU

Milledgeville, GA

Undergrad Research Assistant

Aug 2012 - May 2014

Areas: atomic molecular optics, experimental physics

(Advisor: Hauke Busch)

- Designed and constructed components of a cost effective setup for laser cooling with a magnetooptical trap
- Gained valuable basic experience in experimental designs, data acquisition techniques, working with high precision optical equipment, building electronics, and working in a machine shop

Dept. of Mathematics, University of Wisconsin-Madison

Madison, WI May 2013 - July 2013

NSF REU Intern

(Advisor: Saverio Spagnolie)

Areas: mathematical modeling, fluid dynamics

- Participated in a National Science Foundation funded Research Experience for Undergraduates in Analysis and Differential Equations
- Modeled, simulated, and analyzed the stability of self-assembled ferro-magnetic swimmers

SIGNIFICANT SOFTWARE CONTRIBUTIONS

StaRMAP Staggered-grid Radiation Moment Approximation

- ♦ Implemented a flexible solver that works with 1D-3D test problems
- Maintain the StaRMAP codebase and spearhead initiatives to enhance functionality

Neuro-VISOR Neuroscience Virtual Simulation of Reality

- Key in implementing robust numerical methods and incorporating interactive features for synapses
- Build and maintain Neuro-VISOR codebase

SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers

♦ Implemented IMEX-MRI-GARK methods and corresponding test problems in the MRIStep module

RECOGNITIONS & ACCOMPLISHMENTS

Winner of SIAM Student Paper Prize

2023

One of three selected recipients by Society for Industrial and Applied Mathematics

Attended Rising Stars in Computational and Data Science Workshop

Apr 2023

Selected to attend workshop sponsored by Oden Institute, Sandia National Laboratory, Lawrence Livermore National Laboratory

Team-Based Inquiry Learning Fellow

2023-2024

Completed certification workshop to implement Team-Based Inquiry Learning in undergraduate courses

Postdoctoral Teaching Award

2022

Temple University Dept. of Mathematics

Honored Guest Speaker

Apr 2022

Georgia College Dept. of Mathematics Award Ceremony	
Dean's Dissertation Fellowship	2020 - 2021
Southern Methodist University	
Haberman Fellowship	2020 - 2021
Southern Methodist University Dept. of Mathematics	
University Ph.D. Fellowship	2017 - 2021
Southern Methodist University	
Outstanding graduating senior in STEM majors	May 2014
Georgia College & State University	
Outstanding graduating physics major	May 2014
Georgia College & State University	
Recipient of Grace Scholarship	2010 - 2014
Philanthropic Ventures Foundation	

PUBLICATIONS

- 1. **R. Chinomona**, K. Kean, B. Seibold, and J. Woods. Moment Methods for Advection on Networks and an Application to Forest Pest Life Cycle Models, 2023 (preprint arxiv 2308.06940)
- 2. D. R. Reynolds, D. J. Gardner, C. S. Woodward, and **R. Chinomona**. ARKODE: A flexible IVP solver infrastructure for one-step methods. *ACM Transactions on Mathematical Software*, 49(2):1–26, 2023. doi: 10.1145/3594632
- 3. **R. Chinomona** and D. R. Reynolds. Implicit–explicit multirate infinitesimal GARK methods. *SIAM Journal on Scientific Computing*, 43(5):A3082–A3113, 2021. doi: 10.1137/20M1354349
- 4. V. T. Luan, **R. Chinomona**, and D. R. Reynolds. Multirate exponential Rosenbrock methods. *SIAM Journal on Scientific Computing*, 44(5):A3265–A3289, 2022. doi: 10.1137/21M1439481
- 5. V. T. Luan, **R. Chinomona**, and D. R. Reynolds. A new class of high-order methods for multirate differential equations. *SIAM Journal on Scientific Computing*, 42(2):A1245–A1268, 2020. doi: 10. 1137/19M125621X
- 6. **R. Chinomona**, J. Lajeunesse, W. H. Mitchell, Y. Yao, and S. E. Spagnolie. Stability and dynamics of magnetocapillary interactions. *Soft Matter*, 11(9):1828–1838, 2015. doi: 10.1039/C4SM02189D

PRESENTATIONS

INCOLNIATIONS	
[D = demonstration, P = pos	ter, T = talk]
Mathematical Opportunities in Digital Twins, George Mason University	Dec 2023
Real-time interactive simulation of reality with neuroscience applications [P,D]	
Computational Applied Mathematics & Operations Research Colloquium, Rice University	Nov 2023
Improving Time Integration for Multiphysics Simulation and Advancing State-of-the-Art Numerical N	Methods in
Practical Applications [T]	
Mid-Atlantic Numerical Analysis Day, Temple University	Nov 2023
StaRMAP: Simple, efficient, and flexible simulation software for radiation transport [T]	
Rising Stars in Computational and Data Science Workshop, University of Texas at Austin	Apr 2023
Bridging the gap between numerical analysis and application [T]	-
Mid-Atlantic Numerical Analysis Day, Temple University	Oct 2022
Demonstration of the Neuro-VISOR project [D]	
Int'l. Conference on Computational Methods & Applications in Engineering, Virtual	May 2022
Derivation of stability optimized IMEX-MRI-GARK methods [T]	
ICERM Topical Workshop: Holistic Design of Time-Dependent PDE Discretizations, Virtual	Jan 2022
Multirate IMEX Integrators for PDEs [T]	
Applied Mathematics and Scientific Computing Seminar, Temple University	Sep 2021
Flexible and accurate multirate time-stepping methods for differential equations [T]	
SIAM Annual Meeting, Virtual	July 2021
Highly Accurate and Flexible Multirate Time-Stepping Methods for Multiphysics Applications [T]	
SIAM Conference on Computational Science and Engineering, Virtual	Mar 2021
High-Order Implicit-Explicit Multirate Infinitesimal Methods for Multiphysics Applications [T]	

SIAM Conference on Parallel Processing for Scientific Computing, Seattle, WA

Construction of High-Order Multirate IMEX Integrators for Large-Scale Complex Multiphysics Applications [P]

SIAM TX-LA Section Meeting, Southern Methodist University

Nov 2019

Comparison of High-Order Multirate Integrators [P]

LLNL Summer Student poster session, Livermore, CA

Multirate Time Integration for Cloud Microphysics [P]

SMU Research Day, Southern Methodist University

A New Class of High-Order Multirate Integrators for Multiphysics Applications [P]

SIAM Conference on Computational Science and Engineering, Spokane, WA

Feb 2020

Feb 2020

Feb 2020

Feb 2020

Feb 2020

Feb 2020

A New Class of High-order, Flexible, IMEX Multirate Integrators for Multiphysics Applications [T]

TEACHING EXPERIENCE

Instructor of Record (Temple University)	
MATH 3044 Numerical Analysis II	Spring 2023
MATH 3043 Numerical Analysis I	Fall 2023, Fall 2022
MATH 2121 Mathematical Modeling and Simulation	Spring 2023, Spring 2022
MATH 1042 Calculus II	Fall 2021
Teaching Assistant	
[SMU] MATH 3315 Introduction to Scientific Computing	Fall 2017 - Spring 2018
[GCSU] MATH 1113 Precalculus	Spring 2014
[GCSU] MATH 1111 College Algebra	Fall 2011 - Spring 2012
Tutoring	
[Varsity Tutors - Houston TX] High school algebra and calculus	Nov 2016 - Apr 2017
[Terrific Tutors - Katy, TX] High school algebra and calculus	Feb 2017 - Apr 2017
Grader (Rice University)	
CAAM 536 Numerical Methods for PDEs	Spring 2016
CAAM 335 Matrix Analysis	Fall 2014 - Fall 2015

OTHER EXPERIENCES

Dept. of Mathematics, Temple University

Research Assistant Professor

Philadelphia, PA

July 2021 - Present

Curriculum Development and Mentorship

- Organized class materials, created video lectures and taught the department's first course in Mathematical Modeling and Simulation
- Supervised 2 undergraduate students on honors projects in Numerical Analysis and Mathematical Modeling and Simulation

Dept. of Physics, GCSU

Milledgeville, GA

Laboratory Assistant

Feb 2012 - Dec 2013

- Taught and facilitated introductory physics labs
- Set-up and documented detailed experiment layouts, streamlining the training process for laboratory assistants

Payroll Services, GCSU

Milledgeville, GA

Student Assistant

Aug 2011 - May 2014

 Executed receptionist duties, including the warm welcoming of customers, handling incoming phone calls, and organizing payroll data filing

Alumni Records, GCSU

Milledgeville, GA

Student Assistant

Mar 2011 - July 2011

 Interacted with Georgia College alumni, ensuring the accuracy of their records and gathering details about their current professional positions Phonathon Caller Sep 2010 - Apr 2011

Conducted outreach calls to secure contributions for the school's scholarship funds

SERVICE & LEADERSHIP

Judge, COMAP Interdisciplinary Contest in Modeling Mar 2022 Organizer, SMU Math Graduate Student Seminar Jan 2020 - Dec 2020 **Dept. Representative**, SMU Graduate Student Assembly Jan 2020 - May 2021 Volunteer, Green Careers Dallas Nov 2019 - Mar 2020 **Advisory Committee Member, SMU** Graduate Student Health Insurance Advisory Panel Mar 2019 Judge, Dallas Regional Science & Engineering Fair Feb 2019, Feb 2020 **Treasurer**, Rice University SIAM Student Chapter Aug 2015 - May 2016 Participant, GCSU Georgia Education Mentorship Program Aug 2013 - May 2014 Participant, GCSU Leadership Certificate Program Jan 2011 - May 2014 **Secretary**, GCSU International Club Aug 2012 - May 2013 Secretary, GCSU Mathematics Club Aug 2012 - May 2013

PROFESSIONAL MEMBERSHIPS

Society for Industrial and Applied Mathematics (SIAM) Association for Computing Machinery (ACM) Association for Women in Mathematics (AWM)